
ICDRS08 In-Circuit Debugger for RS08

Contents:
• Software License
• Startup
• User Interface
• Nomenclature
• ICD Commands
• Command Recall
• Using The Variables Window
• Using Code Window Quick Execution Features
• Using Code Window Popup Debug Evaluation Hints
• Technical Support & Customer Service

Plug-Ins:
• Register File Viewer/Editor
• ELF/DWARF Support / C Level Debug

 ICD Software License

This software and accompanying documentation are protected by United States Copyright law
and also by International Treaty provisions. Any use of this software in violation of copyright
law or the terms of this agreement will be prosecuted. The software being installed is
copyrighted by P&E Microcomputer Systems, Inc. Copyright notices have been included in the
software.

P&E Microcomputer Systems authorizes you to make archival copies of this software for the
sole purpose of back-up and protecting your investment from loss. Under no circumstances
may you copy this software or documentation for the purpose of distribution to others without
the express written permission of P&E Microcomputer Systems. Under no conditions may you
remove the copyright notices from this software or documentation.

This software requires the use of a license code to operate.

If you have purchased an ICD software license from P&E Microcomputer Systems and been
issued a hardware-based license code (a license code that begins with V2), you may (1) install
the provided hardware-based ICD license code into a single Cyclone or Multilink unit and (2)
install this software on any computer with which the specific Multilink or Cyclone will be used.
This gives you the ability to run this software on multiple computers, used by multiple users,
with the Multilink or Cyclone hardware which has the hardware license code installed.

If you have purchased an ICD software license from P&E Microcomputer Systems and been
issued a legacy computer based license code (a license code that begins with V1), this
software is licensed as a single user license which means: (1) This software may be used by
one individual user on up to two different computers, provided that the software is never used
on the two computers at the same time, (2) P&E Microcomputer Systems expects that group
programming projects making use of this software will purchase a copy of the software and
documentation for each user in the group. Contact P&E Microcomputer Systems for volume
discounts and site licensing agreements.

P&E Microcomputer Systems does not assume any liability for the use of this software beyond
the original purchase price of the software. In no event will P&E Microcomputer Systems be
liable for additional damages, including any lost profits, lost savings or other incidental or
consequential damages arising out of the use or inability to use these programs, even if P&E
Microcomputer Systems has been advised of the possibility of such damage.

By installing or using this software, you agree to the terms of this agreement.

$ K Command Line Parameters

To setup ICDRS08 to run with certain command line parameters, highlight the ICDRS08 icon and
select PROPERTIES from the Program Manager File Menu.

Syntax:

ICDRS08 [option] ... [option]

[option] Optional parameters are as follows:

lpt1…lpt3 Chooses lpt1, lpt2, or lpt3. The software will remember the last

setting used.
pci1…pci6 Chooses which PCI card to communicate with. The software will

remember the last setting used.
pci_delay n Sets speed of PCI card shift clock, where n = 0…255. The equation

for the PCI card shift clock frequency is 33 * 10^6 / (5 + 2n).
running Starts ICD with CPU running (see Running help)

io_delay_cnt n Sets the background debug transfer parameter n where

0<=n<=$7fff. If you start ICD08 without giving an io_delay_cnt, the
software tries to find an appropriate parameter n and shows you
what was selected for xtal frequencies less than approximately 1
MHz.

reset_delay n Causes a delay of 'n' milliseconds after the software pulses the reset

line, and before the software checks the processor status to make
sure that background mode has been entered. Used when reset
pulse on the reset line is extended, for example by using a reset
driver, which may add several hundred milliseconds to reset.

quiet Starts the ICD without filling the memory windows and the

disassembly window. Can be used for speed reasons or to avoid
DSACK errors on startup until windows are positioned or chip selects
enabled.

-or-
path A DOS path to the directory containing the source code for source level debug

or a DOS path to a source file to be loaded at startup (path part is
also saved).

Command_Line_Parameters
$ Command Line Parameters
K com;command line;nodtr;parameters;path;quiet;ram_start;running;STARTUP

Note:

If more then one option is given, they must be separated by spaces.

Examples:

ICDRS08 lpt2 Chooses lpt2, Causes the background debug mode clock to be
extended by 2 Cycles.

Additionally, if a file named STARTUP.ICD exists in the current directory, it will be run as a macro
at startup. See the MACRO command for more information.

$ K User Interface

• Status Window
• Code Window
• Variables Window
• Memory Window
• Colors Window
• CPU Window

User_Interface
$User Interface
KUser Interface;Windows

$ K Nomenclature

Note the following:

n Any number from 0 to 0FFFFFFFF (hex). The default base is hex. To enter
numbers in another base use the suffixes 'T' for base ten, 'O' for base eight or 'Q'
for base two. You may also use the prefixes '!' for base ten, '@' for base 8 and
'%' for base two. Numbers must start with either one of these prefixes or a
numeric character.

Example: 0FF = 255T = 377O = 11111111Q = !255 = @377 = %11111111

add Any valid address (default hex).

[] Optional parameter.

PC Program Counter points to the next instruction to be fetched (Equals IP+6).

str ASCΙΙ string.

; Everything on a command line after and including the “;” character is considered
a comment. This helps in documenting macro (script) files.

NOMENCLATURE
$NOMENCLATURE
KNOMENCLATURE

$ K Commands
A B C D E F G H Ι J K L M N O P Q R S T U V W X Y Z

A

A Set accumulator A.

ASM [add] Assemble Instructions to memory.

ASCIIF3 or
ASCIIF6 Toggles the memory windows.

 # B

BELL Sound Bell

BF Block Fill. Same as FILL command.

BR Set break point.

C

C Set/Clear C bit.

CAPTURE Open a capture file named 'filename'. Same as the LOGFILE
command.

CAPTUREOFF Turn off capturing and close the current capture file.

CCR Set Condition Code Register.

CLEARMAP Clear Away Map File.

Commands
$Commands
KCommands
A
B
BF
C
CAPTURE

CLEARSYMBOL Clear Away Symbols.

CLEARVAR Remove all the variables from the variables window.

CODE Show disassembled code in the code window starting at address
add. If you specify an address in the middle of an intended
instruction, improper results may occur.

COLORS Change Debugger Colors

D

DASM Disassemble Instructions

DUMP Dump Memory to the Status Window

E

EVAL Evaluates a numerical term or simple expression, giving the result in
hexadecimal, decimal, octal, and binary formats.

EXIT Terminates the software and closes all windows.

F

FILL Block Fill. Same as BF command.

G

G or GO Begin Program Execution

GOEXIT Similar to GO command except that the target is left running without
any breakpoints and the debugger software is terminated.

D
E
F
FILL
G
GO
GOEXIT

GONEXT Go from the current PC until the next instruction is reached. Used to
execute past a subroutine call or past intervening interrupts.

GOTIL Execute Program until Address

H

#HELP Display Help Information

HLOAD Load ELF/DWARF source files

HLOADMAP Load DWARF debugging information

HSTEP Single-step one high-level source line

HSTEPFOR Continually step high-level instructions

HGO Start full-speed execution

HREG Set H Register

HX Sets both bits of concatenated H:X index register.

I

#INFO Displays information about the line that is highlighted in the source
window

IRQ or INT Displays value of IRQ pin.

L

LF or LOGFILE Open/Close Log File. Same as CAPTURE command.

LOAD Load S19 File.

GOTIL
H
I
L
A7UQQB7

LOADALL Execute a LOAD and a LOADMAP command.

LOADDESK Loads the desktop settings that set the window positions, size, and
visibility.

LOADMAP Load Debug Map.

LOADV Execute the LOAD command and then automatically do a VERIFY

command with the same file.

LOAD_BIN Load a binary file of bytes starting at address add. The default
filename extension is .BIN.

LOADV_BIN Execute the LOAD_BIN command and then do a VERIFY using the

same file.

M

MACRO Execute Script File

MACROEND Stop Recording Script File.

MACROSTART Start Recording Script File.

MACS Bring up a window with a list of macros.

MD or MD1 Displays (in the first memory window) the contents of memory
locations, beginning at the specified address. Identical to MD1
command.

MD2 Displays (in the second memory window) the contents of memory

locations, beginning at the specified address.

MM or MEM Memory Modify.

CVITGIS
ATQSFRT
UH255E
M
MACRO
AMT3Z_M
MM

N

#NOBR Clear all break points.

P

PC Assigns the specified value to the program counter.

Q

QUIET Turn off (on) refresh of memory based windows.

QUIT Exit the program.

R

R Start Register Viewer/Editor.

REG Display CPU Registers to Status Window (same as STATUS
command).

REM Add Comments to Script File.

RESET Reset Emulation MCU.

RTVAR Show address in Variable Window.

RUN Begin Program Execution

S

SAVEDESK Saves the desktop settings for the application when it is first opened
or for use with the LOADDESK command.

N
P
Q
R
HVSXMT
REG
RESET
S

SERIAL Set up parameters for serial port.

SHOWCODE Show disassembled code in the code window starting at address
add. If you specify an address in the middle of an intended
instruction, improper results may occur.

SHOWMAP Enables the user to view information from the current MAP file stored

in the memory.

SHOWPC Displays code in the code window starting from the address in the

program counter.

SNAPSHOT Take a snapshot (black and white) of the current screen and send it
to the capture file if one exists. Can be used for test documentation
and system testing.

SOURCEPATH Either uses the specified filename or prompts the user for the path to

search for source code that is not present in the current directory.

 SP Sets Stack Pointer

STATUS Display CPU Registers to Status Window (same as REG command).

SS Does one step of source level code. Source must be showing in the
code window.

STEP or ST or T Single Step (Trace).

STEPFOR Step forever.

STEPTIL Repeatedly single step until the instruction pointer is equal to the

given address.

SYMBOL Add the given label to a temporary symbol table with the value given.
If a map file has been loaded, the values and symbols in that file take
precedence. Specifying symbol with no parameters lists the
temporary symbols in the debug window.

T

T [n] Same as ST.

STEP
SYMBOL
T

U

UPLOAD_SREC Uploads the memory locations between the first and second
addresses (add) to the screen in the form of S records.

V

#VAR Displays the specified address and its contents in the variables
window for viewing during code execution.

VER Display the version number of the ICD software. Same as VERSION.

VERIFY Compare the contents of program memory with an S-record file. You

will be prompted for the name of the file. The comparisons will stop
at the first location with a different value.

VERSION Display the version number of the ICD software. Same as VER.

W

WHEREIS Give the value for the given symbol, either temporary or MAP file
based. See SYMBOL.

X

X or XREG Sets the index register (X) to the specified value.

Z

Z Set/clear Z bit.

U
V
W
X
Z

$ K PEmicro

Technical Support and Customer Service:

 Web: Please use our web-based support request system at
http://www.pemicro.com/SRS/main_screen_user.cfm

Email: technical-info@pemicro.com

 sales-info@pemicro.com

 Phone: 617-923-0053

Fax: 617-923-0808

98 Galen St., 2nd Floor
Watertown, MA 02472

Technical_Support
$Technical Support
KContact Information;Sales;Technical Support

$ K Short History Of PEmicro

PEmicro was founded in 1980 and incorporated in 1982 by Dr. David A. Perreault. PEmicro
developed and marketed the first general purpose EPROM programmer. It was based on the
Z80 microprocessor and provided the ability to reconfigure pin-outs and programming algorithms
to accommodate new and special devices.

The second product developed by PEmicro was an S100 bus based ROM emulator. This
product pushed forward the capability to rapidly develop microcomputer based systems.

Having developed a large number of microcontroller/microprocessor systems including both
hardware and software, PEmicro capitalized on this experience and began developing software
development tools. Much of this effort was directed toward simulators and cross assemblers for
microcontrollers from Motorola, Texas Instruments, Intel, and National Semiconductor.

PEmicro developed the concept of an in-circuit simulator. This device combines the best
features of a simulator with the added advantage of real ΙO. This concept was used in Motorola's
very successful promotion for the 68HC05K1 part called the KICS05.

More recently, PEmicro has developed in circuit emulators and in line EPROM/EEPROM
programmers for Motorola's 68HC16 and 68HC3xx series of processors. These products were
the first to use the background debug mode on these processors to provide full in-circuit
emulation. PEmicro worked with Motorola to develop their product introduction kit, the
68HC16EVB, which Motorola used to introduce this new product to the computer marketplace.

P_E_History
$P&E History
KP&E History

$ K Command Recall

You can use the PgUp and PgDn keys to scroll through the past 30 commands issued in the
debug window. Saved commands are those typed in by the user, or those entered through
macro (script) files. You may use the ESC key to delete a currently entered line including one
selected by scrolling through old commands.

Note that only "command lines" entered by the user are saved. Responses to other ICD
prompts are not. For example, when a memory modify command is given with just an address,
the ICD prompts you for data to be written in memory. These user responses are not saved for
scrolling - however, the original memory modify command is saved.

Command_Recall
$Command Recall
KCommand Recall

$ K Memory Access

1. When you modify bytes, words, or longs they are read/written using the corresponding
background debug mode read/write.

2. Memory window displays are read using word reads.

3. The VAR window is read using the appropriate reads.

4. Code window data is read using word reads.

Memory_Access
$Memory Access
KMemory Access

$ K IRQ or INT Command

The IRQ command displays the state value of the MCU IRQ pin. Same as the INT command.

Syntax:
 IRQ

Examples:

>IRQ Displays value of the IRQ pin.

IRQ_or_INT_Command
$IRQ or INT Command
KINT;IRQ

$ K Using The Register Interpreter

The register interpreter allows descriptive display/modification of bit fields within the processor’s
peripheral registers. This capability allows the user to quickly check the current state of a
peripheral and easily check their configuration of the device. When displayed from the debugger,
the register interpreter reads the current value of the peripheral register, decodes it, and displays
it for the user. When displayed from WinIDE, all the fields are initialized to 0, and when the user
hits the Enter key the value is written into the editor at the current cursor location (as opposed to
being written back into memory as the debugger does).

Register Interpreter Display
In the debugger, use either the “R” command or click the view/edit register button on the main
button bar. To display in the WinIDE, use the “SHIFT-F1” keystroke combination or the register
files button on the main buttonbar. In either application, a window will appear allowing the user
to select a specific peripheral block to choose (this image shows only one available block):

{bmc reg_blk.bmp}

Double clicking the module of choice will bring up the register selection window:

{bmc reg_sel.bmp}

Double clicking a specific register will bring up the edit/display window for that register:

{bmc reg_view.bmp}

The keystrokes and mouse actions are listed in the windows which allow the user to modify the
values of each of the fields. By right clicking on a specific field, the user is shown all options for
that particular field:

{bmc regfldop.bmp}

When in the debugger, when the user quits the register view/edit window by hitting the ESC key,
if they have modified the register’s value, they will be given the opportunity to write the new value
into the register as shown in the following window:

{bmc regmodcf.bmp}

Adding Register Field Descriptions To VAR Window

Using_The_Register_Interpreter
$ Using The Register Interpreter
K R command

Bit fields defined within a register description may be added to the variables window via the “_TR”
command in the debugger. After selecting a field, this field is added to the variables window and
will be continually updated with all the other information in the variables window. A variables
window with some fields from one of the chip selects is shown here:

{bmc addregds.bmp}

$ K G or GO or RUN - Begin Program Execution

The G or GO or RUN command starts execution of code in the Debugger at the current Program
Counter (PC) address, or at an optional specified address. When only one address is entered,
that address is the starting address. When a second address is entered, execution stops at that
address. The G or GO or RUN commands are identical. When only one address is specified,
execution continues until a key or mouse is pressed, a breakpoint set with a BR command
occurs, or an error occurs.

Syntax:

 GO [<startaddr> [<endaddr>]]

Where:

<startaddr> Optional execution starting address. If the command does not have a
<startaddr> value, execution begins at the current PC value.

<endaddr> Optional execution ending address.

Examples:

>GO Begin code execution at the current PC value.
>GO 346 Begin code execution at hex address 346.
>G 400 471 Begin code execution at hex address 400. End code execution just

before the instruction at hex address 471.
>RUN 400 Begin code execution at hex address 400.

G_or_GO_or_RUN_Commands
$G or GO or RUN Commands
KG;GO;RUN

$ K BR Command

Sets or clears a breakpoint at the indicated address. Break happens if an attempt is made to
execute code from the given address. There are at most 7 breakpoints. They cannot be set at
an odd address. Typing BR by itself will show all the breakpoints that are set and the current
values for n.

You may also add/remove breakpoints by double-clicking on the red dot to the left of a particular
line of code in the Code Window.

Syntax:

 BR [add] [n]

Where:

add Address at which a break point will be set.
n If [n] is specified, the break will not occur unless that location has been

executed n times. After the break occurs, n will be reset to its initial
value. The default for n is 1.

Examples:

>BR ; Shows all the breakpoints that are set and the current values for n.
>BR 100 ; Set break point at hex address 100.
>BR 200 5 ; Break will not occur unless hex location 200 has been executed 5

times.

BR_Command
$BR Command
KBR;Breakpoint - Clear;Breakpoint - Set

$ K LOAD - Load S19 and MAP

The LOAD command loads a file in .S19 format into the Debugger. Entering this command
without a filename value brings up a list of .S19 files in the current directory. You can select a file
to be loaded directly from this list.

Syntax:

 LOAD [<filename>]

Where:

<filename> The name of the .S19 file to be loaded. You can omit the .S19
extension. The filename value can be a pathname that includes an
asterisk (*) wildcard character. If so, the command displays a window
that lists the files in the specified directory, having the .S19 extension.

 Examples:

>LOAD PROG1.S19 Load file PROG1.S19 and its map file into the Debugger at the
load addresses in the file.

>LOAD PROG2 Load file PROG2.S19 and its map file into the Debugger at the
load addresses in the file.

>LOAD A: Display the names of the .S19 files on the diskette in drive A:, for
user selection.

>LOAD Display the names of the .S19 files in the current directory, for
user selection.

LOAD_Command
$LOAD Command
KLOAD;Map File - Load;S19 - Load

$ K GOTIL - Execute Program until Address

The GOTIL command executes the program in the Debugger beginning at the address in the
Program Counter (PC). Execution continues until the program counter contains the specified
ending address or until a key or mouse is pressed, a breakpoint set with a BR command occurs,
or an error occurs.

You may also execute a GOTIL to a particular line of code by double-clicking on the blue arrow to
the left of that line of code in the Code Window.

Syntax:

 GOTIL <endaddr>

Where:

 <endaddr> The address at which execution stops.

Example:

 >GOTIL 3F0 Executes the program in the Debugger up to hex address 3F0.

GOTIL_Command
$GOTIL Command
KGOTIL

$ K ST or STEP or T - Single Step

The ST or STEP or T command steps through one or a specified number of assembly
instructions, beginning at the current Program Counter (PC) address value, and then halts.
When the number argument is omitted, one instruction is executed. If you enter the ST command
with an <n> value, the command steps through that many instructions.

Syntax:

 STEP <n>
 or
 ST <n>
 or
 T <n>

Where:

 <n> The hexadecimal number of instructions to be executed by each command.

Example:

 >STEP Execute the assembly instruction at the PC address value.
 >ST 2 Execute two assembly instructions, starting at the PC address value.

ST_or_STEP_or_T_Commands
$ST or STEP or T Commands
KSingle Step;ST;STEP;T

$ K BLOCK FILL or BF

The BF or FILL command fills a block of memory with a specified byte, word or long. The
optional variant specifies whether to fill the block in bytes (.B, the default), in words (.W) or in
longs (.L). Word and long must have even addresses.

Syntax:

 BF[.B | .W | .L] <startrange> <endrange> <n>
 FILL[.B | .W | .L] <startrange> <endrange> <n>

Where:

<startrange> Beginning address of the memory block (range).
<endrange> Ending address of the memory block (range).
<n> Byte or word value to be stored in the specified block.

 The variant can either be .B, .W, .L, where:

 .B Each byte of the block receives the value.
 .W Each word of the block receives the value.
 .L Each word of the block receives the value.

 Examples:

>BF C0 CF FF Store hex value FF in bytes at addresses C0-CF.
>FILL C0 CF FF Store hex value FF in bytes at addresses C0-CF
>BF.B CO CF AA Store hex value AA in bytes at addresses C0-CF.
>FILL.B CO CF AA Store hex value AA in bytes at addresses C0-CF.
>BF.W 400 41F 4143 Store word hex value 4143 at addresses 400-41F.
>FILL.W 400 41F 4143 Store word hex value 4143 at addresses 400-41F.
>BF.L 1000 2000 8F86D143 Store long hex value 8F86D143 at address 1000-

2000
>FILL.L 1000 2000 8F86D143 Store long hex value 8F86D143 at address 1000-

2000

BLOCK_FILL_Command
$BLOCK FILL Command
KBF;BF.B;BF.L;BF.W;BLOCK FILL;FILL

$ K TRACE

The TRACE command is similar to the GO command except that execution does not occur in
real-time. The ICD software monitors the execution of the CPU and logs the address of (up to)
the last 256 instructions that have been executed into an internal array .

The trace executes from the first address until the breakpoint at the second address. If only one
address given, it is the start address. If no stop address is given, the ICD will run forever or until
a breakpoint is reached or a key on the keyboard is hit. If no address is given the command is a
"Trace forever" command.

After execution, you may use the SHOWTRACE command or hit F7 to view the trace buffer.

Syntax:

 TRACE <[add1] [add2]>

Where:

 add1 Starting address
 add2 Ending address

Example:

>TRACE 800 805 Will give you an estimate of real time to execute the command from
hex location 800 to hex location 805.

TRACE_Command
$TRACE Command
KTRACE

$ SHOWTRACE

After executing the TRACE command, which monitors the execution of the CPU and logs the
address of (up to) the last 256 instructions that have been executed into an internal array, the
SHOWTRACE command (or F7) allows the user to view this trace buffer.

Syntax:

 SHOWTRACE

Example:

>SHOWTRACE Displays the trace buffer logged during a previously executed
TRACE command.

SHOWTRACE_Command
$SHOWTRACE Command

$ SOURCE

If a valid map file has been loaded, the SOURCE command will toggle between showing actual
source code and disassembled code.

Syntax:

 SOURCE

Example:

>SOURCE Toggles between source code and disassembled code in debug window.

SOURCE_Command
$SOURCE Command

$ K STEPTIL - Single Step to Address

The STEPTIL command continuously steps through instructions beginning at the current
Program Counter (PC) address until the PC value reaches the specified address. Execution
also stops if a key or mouse is pressed, a breakpoint set with a BR command occurs, or an error
occurs.

Syntax:

 STEPTIL <address>

Where:

<address> Execution stop address. This must be an instruction address.

Example:

>STEPTIL 0400 Execute instructions continuously until PC hex value is 0400.

STEPTIL_Command
$STEPTIL Command
KSingle Step To Address;STEPTIL

$ K RESET - Reset Emulation MCU

The RESET command simulates a reset of the MCU and sets the program counter to the
contents of the reset vector. This command does not start execution of user code.

Syntax:

 RESET

Example:

 >RESET Reset the MCU.

RESET_Command
$RESET Command
KRESET

$ K LPTx

Specifies which PC compatible parallel port should be used for the debugger. The port must be
fully PC compatible and a full 25-pin cable must be used.

Syntax:

 LPTx

Where:

 x 1, 2 or 3

Example:

 LPT 2 Specifies that the debugger should use parallel port 2

LPTx_Command
$LPTx Command
KLPT1;LPT2;LPT3;LPTx

$ K WATCHDOG

Disables watchdog timer (toggles the state of the SWE bit in the SYPCR). Remember that this
register may only be written once following a reset of the hardware. Reset enables the watchdog
timer.

Syntax:

 WATCHDOG

Example:

 >WATCHDOG

WATCHDOG_Command
$WATCHDOG Command
KWATCHDOG

$ K STEPFOR - Step Forever

STEPFOR command continuously executes instructions, one at a time, beginning at the current
Program Counter address until an error condition occurs, a breakpoint occurs, or a key or
mouse is pressed. All windows are refreshed as each instruction is executed.

Syntax:

 STEPFOR

Example:

 >STEPFOR Step through instructions continuously.

STEPFOR_Command
$STEPFOR Command
KSTEPFOR

$ K VERIFY

Compares the contents of program memory with an S-record file. You will be prompted for the
name of the file. The comparisons will stop at the first location with a different value.

Syntax:

 VERIFY

Example:

 >LOADALL test.s19
 >VERIFY As soon as you press <ENTER> key it will give you a message
"Verifying...verified"

VERIFY_Command
$VERIFY Command
KVERIFY

$ K NOBR

Clears all break points.

Syntax:

 NOBR

Example:

>NOBR Clears all break points.

NOBR_Command
$NOBR Command
KBreakpoints - Clear All;NOBR

$ K TIME

Will give you an estimate of real time to execute the command from one address to another.

Set breakpoint at second address. Go from first address. If only one address given, it is the start
address. If no stop address is given, the ICD will run forever or until a breakpoint is encountered
or a key on the keyboard is hit. If no address is given the command is a "Time forever"
command. When the command ends (either a break or a key) the debug window will show the
amount of real-time that passed since the command was initiated.

Syntax:

 TIME <[add1] [add2]>

Where:

 add1 Starting address
 add2 Ending address

Example:

>TIME 800 805 Will give you an estimate of real time to execute the command from
hex location 800 to hex location 805.

TIME_Command
$TIME Command
KTIME

$ K LOADALL

Does a LOAD and a LOADMAP command.

Syntax:

 LOADALL [filename]

Where:

 filename Filename of your source code

Example:

 LOADALL myprog This command will load the S19 object file and the P&E Map file.

LOADALL_Command
$LOADALL Command
KLOADALL

$ K COUNT

The COUNT command tells the user how many times each address in the internal counter table
is executed. If no address parameters are provided, the processor will execute from the current
Program Counter until an existing breakpoint is encountered, or the user presses a key. If the
user provides a starting address [add1], the processor will begin executing from this address until
it reaches the second address [add2], or if that parameter is not given, until an existing
breakpoint is encountered, or the user presses a key. When a breakpoint or keypress occurs, you
are put into the "Show Count" window. The count locations set in the source code window are
shown in descending order of executions. The percent is a rough percent of all counts. You
may scroll in this window using the cursor keys and return to the debug window by hitting F1.

The addresses in the internal counter table are set using the COUNTER command.

Syntax:

 COUNT [add1] [add2]

Where:

 add1 Go from first address.
 add2 Set breakpoint at second address.

Example:

>COUNT 100 200 Start execution of the program at address 100 and stops at
address 200.

COUNT_Command
$COUNT Command
KCOUNT

$ K COUNTER

Adds or subtracts a location from the internal counter table. The user may then use the COUNT
command to count how many times each of the locations in the table executes. Using the
COUNTER command with no address shows the current table of counters.

Syntax:

 COUNTER [add]

Where:

 add Address to be added to, or removed from, the internal counter table.

Example:

>COUNTER 100 Add (or remove) a counter at hex location 100.

>COUNTER Shows all the current internal counters.

COUNTER_Command
$COUNTER Command
KCOUNTER

$ K MACS

Brings up a window with a list of macros. These are files with the extension .ICD (such as the
STARTUP.ICD macro). Use the arrow keys and the <ENTER> key or mouse click to select.
cancel with the <ESC> key.

Syntax:

 MACS

Example:

>MACS Brings up a list of MACROS

MACS_Command
$MACS Command
KMACS

$ K SERIAL

Sets up parameters for serial port. This port may then be attached to the Serial Port on your
target for real-time debugging of communications software. See SERIALON command. COM1
or COM2, baud = 9600, 4800, 2400, 1200, 600, 300, 150 or 110, parity = N, E or O, data bits =
7 or 8, stop bits = 1 or 2. Example: SERIAL 1 9600 n 8 1

Syntax:

 SERIAL (1 or 2) (baud) (parity) (data bits) (stop bits)

Where:

 1 or 2 COM1 or COM2
 baud Baud rate ranging from 110 to 9600
 parity No, Even or Odd parity
 data bits 7 or 8 data bits
 stop bits 1 or 2 stop bits

Example:

>SERIAL 2 9600 E 8 2 Sets serial port to Com2 port with 9600 baud rate, even parity,
8 data bits and 2 stop bits

SERIAL_Command
$SERIAL Command
KSERIAL

$ K SERIALON

Turns the communication window into a dumb terminal during a GO command using the serial
port set up with the SERIAL command. To terminate the GO command from the keyboard, hit
F1.

Syntax:

 SERIALON

Example:

 >SERIAL 2 9600 N 8 1
 >SERIALON
 >GO

SERIALON_Command
$SERIALON Command
KSERIALON

$ K SERIALOFF

Turns off serial port use during GO.

Syntax:

 SERIALOFF

Example:

 >SERIALOFF Turns off serial port use during GO command

SERIALOFF_Command
$SERIALOFF Command
KSERIALOFF

$ K RUNNING

Sometimes it is desirable to leave the CPU running and exit the ICD debug software. To do this,
use the GOEXIT command. To re-enter the ICD debug software, use the option RUNNING as a
parameter on the start up command line (see STARTUP). This option causes the debugger NOT
to do a RESET at startup and to ignore any STARTUP.ICD macro file. In order to use this
option, the CPU must have previously been left executing by the debugger.

RUNNING_Parameter
$RUNNING Parameter
Krunning

$ K GOEXIT

Similar to GO command except that the target is left running without any breakpoints and the
debugger software is terminated.

Syntax:

 GOEXIT [add]

Where:

 add Starting address of your code.

Example:

>GOEXIT 100 This will set the program counter to hex location 100, run the program
and exit from the background debugging mode.

GOEXIT_Command
$GOEXIT Command
KGOEXIT

$ K MD - Memory Display

The MD command displays the contents of 32 emulation memory locations in the first memory
window. The specified address is the first of the 32 locations. If a logfile is open, this command
also writes the first 16 values to the logfile.

Syntax:

 MD <address>

Where:

 <address> The starting memory address for display in the memory window.

Example:

 >MD 1000 Display the contents of 32 bytes of memory beginning at address

1000.

Memory_Display
$Memory Display
KMD;Memory Display

$ K MD2 Command

The MD2 command displays the contents of 32 emulation memory locations in the second
memory window. The specified address is the first of the 32 locations. If a logfile is open, this
command also writes the first 16 values to the logfile.

Syntax:

 MD2 <address>

Where:

 <address> The starting memory address for display in the memory window.

Example:

>MD2 1000 Display the contents of 32 bytes of memory in the second

memory window, beginning at address 1000.

MD2_Command
$MD2 Command
KMD2 Command

$ K LOAD_BIN

Loads a binary file of bytes starting at address add. The default filename extension is .BIN.

Syntax:

 LOAD_BIN [filename] [add]

Where:

 filename Name of the binary file
 add Starting address

Example:

 >LOAD_BIN myfile.bin 100 Loads a binary myfile of bytes starting at hex address

100

LOAD_BIN_Command
$LOAD_BIN Command
KBinary File - Load;LOAD_BIN

$ K LOADV_BIN

First performs the LOAD_BIN command and then does a verify using the same file.

Syntax:

 LOADV_BIN [filename] [add]

Where:

 filename Name of the binary file
 add Starting address

Example:

>LOADV_BIN myfile.bin 100 Loads a binary myfile of bytes starting at hex address
100 and then does a verify using the same file.

LOADV_BIN_Command
$LOADV_BIN Command
KBinary File - Load and Verify;LOADV_BIN

$ K REG or STATUS - Show Registers

The REG command displays the contents of the CPU registers in the status window. This is
useful for logging CPU values while running macro files. The STATUS command is identical to
the REG command.

Syntax:

 REG

Example:

 >REG Displays the contents of the CPU registers.

REG_or_STATUS_Commands
$REG or STATUS Commands
KREG;Show Registers;STATUS

$ K BGND_TIME

First, the processor execution is started at the current PC. Then, each time a BGND instruction is
encountered, the time since the last BGND instruction is logged in memory. Up to n points
(default = 500 and max = 500 data points) may be logged. The accuracy is somewhere in the
microsecond range. There is some positive time error to get in and out of background mode. In
addition, while the ICD software is storing the information, the target processor is not running
which introduces a real time error. One can determine the amount of time spent by the ICD to go
into and out of BGND mode by timing the execution of a string of BGND instructions and
deducting this from the times given. The data logging stops when 500 points have been logged
or the operator presses a key. The logged points are then written to the debug window and also
to the capture file if enabled.

Syntax:

 BGND_TIME [n]

Where:

 n number of points logged

Example:

 >BGND_TIME 4

 The above command will give you four time differences (t1,t2,t3,t3).

 PC--------->BGND1----------->BGND2------------------------>BGND3-------------------------
>BGND3
 <-----t1------><---------t2-----------><------------t3----------------><---------------t4----------------->

BGND_TIME_Command
$BGND_TIME Command
KBGND_TIME

$ K QUIET

Turns off (or on) refresh of memory based windows. This command can be used on the startup
command line. Default = on.

Syntax:

 QUIET

Example:

>QUIET Toggles the current debugger state between quiet and not quiet.
>QUIET OFF Disables Quiet mode (all windows refresh).
>QUIET ON Enables Quiet mode (windows are blank and do not refresh).

QUIET_Command
$QUIET Command
Kquiet;Refresh of Memory-Based Windows - Toggle

$ K DUMP_TRACE

Dumps the current trace buffer to the debug window and to the capture file if enabled.

Syntax:

 Dump_Trace

Example:

 >Dump_Trace

DUMP_TRACE_Command
$DUMP_TRACE Command
KDUMP_TRACE;Trace Buffer

$ K SS

Does one step of source level code. Source must be showing in the code window.

Syntax:

 SS

Example:

 >SS Does one step of source level code.

SS_Command
$SS Command
KSingle Step;SS

$ K GONEXT

Go from the current PC until the next instruction is reached. Used to execute past a subroutine
call or past intervening interrupts.

Syntax:

 GONEXT

Example:

 >GONEXT Goes from the current PC until the next instruction is reached.

GONEXT_Command
$GONEXT Command
KGONEXT

$ K VERSION or VER - Display Software Version

The VERSION command displays the version and date of the software. VER is an alternate form
of this command.

Syntax:

 VERSION

Examples:

 >VERSION Display debugger version.
 >VER Display debugger version.

VERSION_or_VER_Commands
$VERSION or VER Commands
KVER;VERSION

$ K CAPTURE

Opens a capture file named 'filename'. Most outputs to the debug window are also sent to the
capture file. The user is prompted for information as to appending to or deleting the 'filename' file
if it already exists.

Syntax:

 CAPTURE <filename>

Where:

 <filename> Name of the file where commands and messages are stored.

Example:

>CAPTURE testfile Capture all the command and messages displayed at the debug
window into the file "TESTFILE.CAP".

CAPTURE_Command
$CAPTURE Command
KCAPTURE

$ K CAPTUREOFF

Turns off capturing of commands and messages at the debug window and closes the current
capture file.

Syntax:

 CAPTUREOFF

Example:

>CAPTUREOFF Turns off capturing of commands and messages at the debug
and window closes the current capture file.

CAPTUREOFF_Command
$CAPTUREOFF Command
KCAPTUREOFF

$ K ASCIIF3 and ASCIIF6

Toggles the memory windows between displaying [data only] // [data and ASCII characters].

ASCIIF3 toggles memory window 1.

ASCIIF6 toggles memory window 2.

Syntax:

 ASCIIF3

Example:

 >ASCIIF3 Toggles memory window 1 between displaying [data only] // [data and
ASCII characters].

ASCIIF3_and_ASCIIF6_Commands
$ASCIIF3 and ASCIIF6 Commands
KASCIIF3;ASCIIF6;Memory Windows - ASCII Toggle

$ MDF3 / MDF6 or SHOWF3 / SHOWF6

Sets a memory screen to show code starting at a specified address or label.

MDF3 displays the code in memory window F3 (same as SHOWF3).

MDF6 displays the code in memory window F6 (same as SHOWF6).

Syntax:

 MDF3 add

Example:

 >MDF3 1000 Displays code beginning at address $1000 in memory window F3.

MDF3_and_MDF6
$MDF3 and MDF6

$ K PC - Program Counter

The PC command assigns the specified value to the program counter (PC). As the PC always
points to the address of the next instruction to be executed , assigning a new PC value changes
the flow of code execution.

An alternative way for setting the Program Counter if source code is showing in a code window is
to position the cursor on a line of code, then press the right mouse button and select the Set PC
at Cursor menu item. This assigns the address of that line to the PC.

Syntax:
 PC <address>

Where:
 <address> The new PC value.

Example:
 >PC 0500 Sets the PC value to 0500.

Program_Counter___Link
$Program Counter - Link
KPC;Program Counter

$ K Status Window

The Status Window serves as the command prompt for the application. It takes keyboard
commands given by the user, executes them, and returns an error or status update when
needed.

Commands can be typed into the window, or a series of commands can be played from a macro
file. This allows the user to have a standard sequence of events happen the same way every
time. Refer to the MACRO command for more information.

It is often desirable to have a log of all the commands and command responses which appear in
the status window. The LOGFILE command allows the user to start/stop the recording of all
information to a text file which is displayed in the status window.

{bml Icd00004.BMP}

POPUP MENU

By pressing the RIGHT MOUSE BUTTON while the cursor is over the status window, the user is
given a popup menu which has the following options:

Help...

Displays this help topic.

KEYSTROKES

The following keystrokes are valid while the status window is the active window:

UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to first status line
END Scroll window to last status line
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic

STATUS_WINDOW
$STATUS_WINDOW
KSTATUS_WINDOW

To view previous commands and command responses, use the scroll bar on the right side of the
window.

$ K In disassembly mode, the base address of the code window is the first line showing in the
window when the scrollbar is at the top. Due to the nature of disassembly, you cannot scroll
backwards arbitrarily, and hence you must have a starting point. This starting point is the base
address. The base address can be set using the SHOWCODE command or by using the popup
menu of the code window. The base address has no meaning in source-level mode unless the
user tries to change it (again, refer to the showcode command).

Code_Window_Base_Address
$Code Window Base Address
KCode Window Base Address

$ K Code Window

The Code Window displays either disassembled machine code or the user's source code if it is
available. The "Disassembly" mode will always show disassembled code regardless of whether a
source file is loaded. The "Source/Disassembly" mode will show source−code if source code is
loaded and the current PC points to a valid line within the source code, and shows disassembly
otherwise. To show both modes at once, the user should have two code windows open and set
one to "Disassembly" and the other to "Source/Disassembly".

Code windows also give visual indications of the Program Counter (PC) and breakpoints. Each
code window is independent from the other and can be configured to show different parts of the
user's code.

· Using Code Window Quick Execution Features
· Using Code Window Popup Debug Evaluation Hints

GOTIL and BREAKPOINT Shortcuts
You may execute a GOTIL to a particular line of code by double-clicking the blue arrow to the left
of that line. You may also set Breakpoint at a particular line of code by double-clicking the red dot
to the left of that line.

{bmc cwind08.bmp}
 Code Window: Disassembly

{bmc cwins08.bmp}
 Code Window: Source

POPUP MENU
By pressing the RIGHT MOUSE BUTTON while the cursor is over the code window, the user is
given a popup menu which has the following options:

Toggle Breakpoint at Cursor

This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set a breakpoint at the selected
location, or if there is already a breakpoint at the selected location, will remove it.

CODE_WINDOW
$ CODE WINDOW
K Code_Window

Set PC at Cursor

This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set the Program Counter (PC) to the
selected location.

Gotil Address at Cursor

This option is enabled if the user has already selected a line in the code window by clicking on it
with the LEFT MOUSE BUTTON. Choosing this option will set a temporary breakpoint at the
selected line and starts processor execution (running mode). When execution stops, this
temporary breakpoint is removed.

Set Base Address

This option allows the code window to look at different locations in the user's code, or anywhere
in the memory map. The user will be prompted to enter an address or label to set the code
window's base address. This address will be shown as the top line in the Code Window. This
option is equivalent to the SHOWCODE command.

Set Base Address to PC

This option points the code window to look at the address where the program counter (PC) is.
This address will be shown as the top line in the Code Window.

Select Source Module

This option is enabled if a source−level map file is currently loaded, and the windows mode is set
to "Source/Disassembly". Selecting this option will pop up a list of all the map file's source
filenames and allows the user to select one. This file is then loaded into the code window for the
user to view.

Show Disassembly or Show Source/Disassembly

This option controls how the code window displays code to the user. The "Show Disassembly"
mode will always show disassembled code regardless of whether a source file is loaded. The
"Show Source/Disassembly" mode will show source-code if source code is loaded and the
current PC points to a valid line within the source code, and shows disassembly otherwise.

Help

Displays this help topic.

KEYSTROKES

The following keystrokes are valid while the code window is the active window:

UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to the Code Window's base address.
END Scroll window to last address the window will show.
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic
ESC Make the STATUS window the active window

$ K Variables Window

The variables window allows the user to constantly display the value of application variables. The
following window shows a display of selected variables in the demonstration application:

{bml varwin1.bmp}

Variables that are pointers are displayed in red. Normal variables are displayed in black. Real-
time variables are displayed in blue. A real-time variable is a variable that is updated even while
the processor is running.

• Adding And Deleting Variables
• Modifying A Variable's Value
• Modifying A Variable's Properties

Variables_Window
$Variables_Window
KVariables_Window

$ K Memory Window

The Memory Window is used to view and modify the memory map of a target. View bytes by
using the scrollbar on the right side of the window. In order to modify a particular set of bytes,
just double click on them. Double-clicking on bits brings up a byte modification window.

{bml Icd00007.BMP}

POPUP MENU

By pressing the RIGHT MOUSE BUTTON while the cursor is over the memory window, the user
is given a popup menu which has the following options:

Set Base Address

Sets the memory window scrollbar to show whatever address the user specifies. Upon selecting
this option, the user is prompted for the address or label to display. This option is equivalent to
the Memory Display (MD) Command.

Show Memory and ASCII

Sets the current memory window display mode to display the memory in both HEX and ASCII
formats.

Show Memory Only

Sets the current memory window display mode to display the memory in HEX format only.

Help...

Shows this help topic.

KEYSTROKES

MEMORY_WINDOW
$MEMORY WINDOW
KMemory_Window

The following keystrokes are valid while the memory window is the active window:

UP ARROW Scroll window up one line
DOWN ARROW Scroll window down one line
HOME Scroll window to address $0000
END Scroll window to last address in the memory map.
PAGE UP Scroll window up one page
PAGE DOWN Scroll window down one page
F1 Shows this help topic
ESC Make the STATUS WINDOW the active window

$ K Colors Window

The Colors Window shows the colors that are set for all of the debugger windows. In order to
view the current color in a window, select the item of interest in the listbox and view the text in the
bottom of the window. To change the color in a window, select the item and then use the left
mouse button to select a color for the foreground or use the right mouse button to select a color
for the background. Some items will only allow the foreground or backgorund to be changed.
Press the OK button to accept the color changes. Press the Cancel button to decline all
changes.

{bmc Icd00008.BMP}

COLORS_WINDOW
$COLORS WINDOW
KColors_Window

$ K Adding And Deleting Variables

Variables may be added via the VAR command in the status window, or by right clicking the
variables window and choosing “Add a variable.” Variables may be deleted by selecting them and
choosing delete. When adding variables, the user is presented with the following dialog:

{bmc varaddel.bmp}

In the variable field, the user should input the address or name of the variable that they would like
displayed in the variables window. The type of the variable should most often be set to “Default,”
which means that the variable will be shown as it is defined in the compiled/loaded application.
When adding a variable the user may also specify the numeric base in which the variable should
be displayed.

Adding_And_Deleting_Variables
$ Adding And Deleting Variables
K Add_Variable

$ K BELL - Sound Bell

The BELL command sounds the computer bell the specified hexadecimal number of times. The
bell sounds once when no argument is entered. To turn off the bell as it is sounding, press any
key.

Syntax:

 BELL [<n>]

Where:

<n> The number of times to sound the bell.

Example:

>BELL 3 Ring PC bell 3 times.

BELL_Command
$BELL Command
KBELL Command

$ K CLEARMAP - Clear Map File

The CLEARMAP command removes the current MAP file from memory. This will force the
debugger to show disassembly in the code windows instead of user source code. The user
defined symbols, defined with the SYMBOL command, will not be affected by this command.
(The NOMAP command is identical to CLEARMAP.)

Syntax:

 CLEARMAP

Example:

 >CLEARMAP Clears symbol and source information.

CLEARMAP_Command
$CLEARMAP Command
KCLEARMAP Command

$ K CLEARVAR

The CLEARVAR command removes all the variables from the variables window.

Syntax:

CLEARVAR

Example:

CLEARVAR Removes all the variables for the variables window.

CLEARVAR_Command
$CLEARVAR Command
KCLEARVAR Command

$ K ASM - Assemble Instructions

The ASM command assembles instruction mnemonics and places the resulting machine code
into memory at the specified address. The command displays a window with the specified
address (if given) and current instruction, and prompts for a new instruction. If an instruction is
entered and the ENTER button is pressed, the command assembles the instruction, stores and
displays the resulting machine code, then moves to the next memory location, with a prompt for
another instruction. If there is an error in the instruction format, the address will stay at the
current address and an 'assembly error' flag will show. To exit assembly, press the EXIT button.
See Instruction Set for related information on instruction formats.

Syntax:

 ASM [<address>]

Where:

<address> Address where machine code is to be generated. If you do not specify
an <address> value, the system checks the address used by the
previous ASM command, then uses the next address for this ASM
command.

Examples:

With an address argument:

>ASM 100

The following window appears:

{bmc Icd00010.BMP}

The user can type a new instruction in the edit box next to the 'New Instruction' text. In this
example, the instruction 'LDA #55' is typed and then the ENTER button is pressed. As soon as
ENTER is click the following window will appears

ASM_Command
$ASM Command
KASM Command

{bmc Icd00011.BMP}

This window shows that address is incremented by 2 and the instruction at address is CLRX.
You can either enter another instruction or click EXIT to get out of this window.

$ K MM or MEM - Modify Memory

The MM command directly modifies the contents of memory beginning at the specified address.
The optional variant specifies whether to fill the block in bytes (.B, the default), in words (.W), or
in longs (.L).

If the command has only an address value, a Modify Memory window appears with the specified
address and its present value and allows entry of a new value for that address. Also, buttons can
be selected for modifying bytes (8 bit), words (16 bit), and longs (32 bit). If only that address is
to be modified, enter the new value in the edit box and press the OK button. The new value will
be placed at the location. If the user wishes to modify several locations at a time, enter the new
value in the edit box and press the >> or << or = button. The new value will be placed at the
specified address, and then the next address shown will be the current address incremented,
decremented, or the same, depending on which button is pressed. To leave the memory modify
window, either the OK or CANCEL buttons must be pressed.

If the MM command includes optional data value(s), the software assigns the value(s) to the
specified address(es) (sequentially), then the command ends. No window will appear in this
case.

Syntax:

 MM [.B|.W|.L] <address>[<n> ...]

Where:

<address> The address of the first memory location to be modified.
<n> The value(s) to be stored (optional).

Examples:

With only an address:

>MM 90 Start memory modify at address $90.

{bmc Icd00012.BMP}

MM_or_MEM_Command
$MM or MEM Command
KMM or MEM Command

With a second parameter:

>MM 400 00 Do not show window, just assign value 00 to hex address 400.
>MM.L 200 123456 Place long hex value 123456 at hex address 200.

$ K EXIT or QUIT - Exit Program

The EXIT command terminates the software and closes all windows. If the debugger is called
from WINIDE it will return there. The QUIT command is identical to EXIT.

Syntax:

 EXIT

Example:

 >EXIT Finish working with the program.

EXIT_or_QUIT_Command
$EXIT or QUIT Command
KEXIT or QUIT Command

$ K CLEARSYMBOL - Clear User Symbols

The CLEARSYMBOL command removes all the user defined symbols. The user defined
symbols are all created with the SYMBOL command. The debug information from MAP files,
used for source level debugging, will be unaffected. The NOSYMBOL command is identical.

Note:

Current user defined symbols can be listed with the SYMBOL command.

Syntax:

 CLEARSYMBOL

Example:

 >CLEARSYMBOL Clears user defined symbols.

CLEARSYMBOL_Command
$CLEARSYMBOL Command
KCLEARSYMBOL Command

$ K LF or LOGFILE - Open / Close Log File

The LF command opens an external file to receive log entries of commands and copies of
responses in the status window. If the specified file does not exist, this command creates the file.
The LOGFILE command is identical to LF.

If the file already exists, an optional parameter can be used to specify whether to overwrite
existing contents (R, the default) or to append the log entries (A). If this parameter is omitted, a
prompt asks for this overwrite/append choice.

While logging remains in effect, any line that is appended to the command log window is also
written to the log file. Logging continues until another LOGFILE or LF command is entered
without any parameter values. This second command disables logging and closes the log file.

The command interpreter does not assume a filename extension.

Syntax:

 LF [<filename> [<R | A>]]

Where:

 <filename> The filename of the log file (or logging device to which the log is written).

Examples:

>LF TEST.LOG R Start logging. Overwrite file TEST.LOG (in the current directory)
with all lines that appear in the status window.

>LF TEMP.LOG A Start logging. Append to file TEMP.LOG (in the current
directory) all lines that appear in the status window.

>LOGFILE (If logging is enabled): Disable logging and close the log file.

LOGFILE_Command
$LOGFILE Command
KLOGFILE Command

$ K MACRO or SCRIPT - Execute a Batch File

The MACRO command executes a macro file, a file that contains a sequence of debug
commands. Executing the macro file has the same effect as executing the individual commands,
one after another. Entering this command without a filename value brings up a list of macro
(.MAC) files in the current directory. A file can be selected for execution directly from this list.
The SCRIPT command is identical.

Note:

A macro file can contain the MACRO command; in this way, macro files can be nested as many
as 16 levels deep. Also note that the most common use of the REM and WAIT commands is
within macro files. The REM command displays comments while the macro file executes.

If a startup macro file is found in the directory, startup routines run the macro file each time the
application is started. See STARTUP for more information.

Syntax:

 MACRO <filename>

Where:

<filename> The name of a macro file to be executed, with or without extension

.MAC. The filename can be a pathname that includes an asterisk(*)
wildcard character. If so, the software displays a list of macro files, for
selection.

Examples:

>MACRO INIT.MAC Execute commands in file INIT.MAC.

>SCRIPT ∗ Display names of all .MAC files (then execute the selected file).

>MACRO A:∗ Display names of all .MAC files in drive A (then execute the

selected file).

MACRO_Command
$MACRO Command
KMACRO Command

>MACRO Display names of all .MAC files in the current directory, then
execute the selected file.

$ K MACROSTART - Save Debug Commands to
File

The MACROSTART command opens a macro file and saves all subsequent debug commands to
that file for later use. This file must be closed by the MACROEND command before the
debugging session is ended.

Syntax:

 MACROSTART [<filename>]

Where:

<filename> The name of the macro file to save commands. The .MAC extension
can be omitted. The filename can be a pathname followed by the
asterisk (∗) wildcard character; if so, the command displays a list of all
files in the specified directory that have the .MAC extension.

Example:

 >MACROSTART TEST.MAC Save debug commands in macro file TEST.MAC

MACROSTART_Command
$MACROSTART Command
KMACROSTART Command

$ K DASM - Disassemble Memory

The DASM command disassembles machine instructions, displaying the addresses and their
contents as disassembled instructions in the status window. The memory locations between the
first and second addresses (add) are uploaded to the screen in the form of Bytes, Words, or
Longwords. The first address must be on an even boundary for Words or Longwords. If the
capture feature is active, the lines of dumped data are also sent to the capture file. Data is read
as Bytes, Words, or Longwords from the data space.

∗ If the command includes an address value, one disassembled instruction is shown, beginning

at that address.

∗ If the command is entered without any parameter values, the software finds the most recently

disassembled instruction then shows the next instruction, disassembled.

∗ If the command includes startrange and endrange values, the software shows disassembled

instructions for the range.

Note:

If the DASM command is entered with a range, sometimes the disassembled instructions scroll
through the status window too rapidly to view. Accordingly, the LF command can be entered,
which records the disassembled instructions into a logfile, or use the scroll bars in the status
window.

Syntax:

DASM <address1> [<address2>] [n]

Where:

<address1> The starting address for disassembly. <address1> must be an
instruction opcode. If you enter only an <address1> value, the system
disassembles three instructions.

<address2> The ending address for disassembly (optional). If you enter an

<address2> value, disassembly begins at <address1> and continues
through <address2>. The screen scrolls upward as addresses and their
contents are displayed, leaving the last instructions in the range
displayed in the window.

DASM_Command
$DASM Command
KDASM Command

n The optional parameter n determines the number of Bytes, Words, or

Longwords which are written on one line.

Examples:

>DASM 300
 0300 A6E8 LDA #0E8
 0302 B700 STA PORTA
 0304 A6FE LDA #FE

>DASM 400 408
 0400 5F CLRX
 0401 A680 LDA #80
 0403 B700 STA PORTA
 0405 A6FE LDA #FE
 0407 B704 STA DDRA

$ K LOADDESK - Load Desktop Settings

The LOADDESK command loads the desktop settings that set the window positions, size, and
visibility. This allows the user to set how the windows are set up for the application. Use
SAVEDESK to save the settings of the windows of the debugger into the desktop file.

Syntax:

 LOADDESK

Example:

 >LOADDESK Get window settings from desktop file.

LOADDESK_Command
$LOADDESK Command
KLOADDESK Command

$ K LOADMAP - Load Map File

The LOADMAP command loads a map file that contains source level debug information into the
debugger. Entering this command without a filename parameter brings up a list of .MAP files in
the current directory. From this a file can be selected directly for loading map file information.

Syntax:

 LOADMAP [<filename>]

Where:

<filename> The name of a map file to be loaded. The .MAP extension can be
omitted. The filename value can be a pathname that includes an
asterisk (∗) wildcard character; If so, the command displays a lists of all
files in the specified directory that have the .MAP extension.

Examples:

>LOADMAP PROG.MAP Load map file PROG.MAP into the host computer.
>LOADMAP PROG1 Load map file PROG1.MAP into the host computer.
>LOADMAP A: Displays the names of the .MAP files on the diskette in drive

A:
>LOADMAP Display the names of the .MAP files in the current directory.

LOADMAP_Command
$LOADMAP Command
KLOADMAP Command

$ K LISTON - Show Info during Steps

The LISTON command turns on the screen listing of the step by step information during stepping.
The register values and program instructions will be displayed in the status window while running
the code. The values shown are the same values seen by the REG instruction.

To turn off this step display, use the LISTOFF command.

Syntax:

 LISTON

Example:

 >LISTON Show step information.

LISTON_Command
$LISTON Command
KLISTON Command

$ K DUMP - Dump Data Memory to Screen

The DUMP command sends contents of a block of data memory to the status window, in bytes,
words, or longs. The optional variant specifies whether to fill the block in bytes (.B, the default),
in words (.W), or in longs (.L).

Note:

When the DUMP command is entered, sometimes the memory contents scroll through the debug
window too rapidly to view. Accordingly, either the LF command can be entered, which records
the memory locations into a logfile, or the scroll bars in the status window can be used.

Syntax:

 DUMP [.B | .W | .L] <startrange> <endrange> [<n>]

Where:

 <startrange> Beginning address of the data memory block.
 <endrange> Ending address of the data memory block (range).
 <n> Optional number of bytes, words, or longs to be written on one line.

Examples:

>DUMP C0 CF Dump array of RAM data memory values, in bytes.
>DUMP.W 400 47F Dump ROM code from data memory hex addresses 400 to

47F in words.
>DUMP.B 300 400 8 Dump contents of data memory hex addresses 300 to 400

in rows of eight bytes.

DUMP_Command
$DUMP Command
KDUMP Command

$ PDUMP - Dump Program Memory To Screen

The PDUMP command sends contents of a block of program memory to the status window, in
bytes, words, or longs. The optional variant specifies whether to fill the block in bytes (.B, the
default), in words (.W), or in longs (.L).

Note:

When the PDUMP command is entered, sometimes the memory contents scroll through the
debug window too rapidly to view. Accordingly, either the LF command can be entered, which
records the memory locations into a logfile, or the scroll bars in the status window can be used.

Syntax:

 PDUMP [.B | .W | .L] <startrange> <endrange> [<n>]

Where:

 <startrange> Beginning address of the program memory block.
 <endrange> Ending address of the program memory block (range).
 <n> Optional number of bytes, words, or longs to be written on one line.

Examples:

>PDUMP C0 CF Dump array of RAM programming memory values, in
bytes.

>PDUMP.W 400 47F Dump ROM code from program memory hex addresses
400 to 47F in words.

>PDUMP.B 300 400 8 Dump contents of program memory hex addresses 300 to
400 in rows of eight bytes.

PDUMP_Command
$PDUMP Command

$ K LISTOFF - Do Not Show Info During Steps

The LISTOFF command turns off the screen listing of the step-by-step information for stepping.
Register values and program instructions do not appear in the status window as code runs. (This
display state is the default when the software is first started.)

To turn on the display of stepping information, use the LISTON command.

Syntax:

 LISTOFF

Example:

 >LISTOFF Do not show step information.

LISTOFF_Command
$LISTOFF Command
KLISTOFF Command

$ K EVAL - Evaluate Expression

The EVAL command evaluates a numerical term or simple expression, giving the result in
hexadecimal, decimal, octal, and binary formats. In an expression, spaces must separate the
operator from the numerical terms.

Note that octal numbers are not valid as parameter values. Operand values must be 16 bits or
less. If the value is an ASCII character, this command also shows the ASCII character as well.
The parameters for the command can be either just a number or a sequence of : number, space,
operator, space, and number. Supported operations are addition (+), subtraction (−),
multiplication (∗), division (/), logical AND (&), and logical OR (^).

Syntax:

 EVAL <n> [<op> <n>]

Where:

 <n> Alone, the numerical term to be evaluated. Otherwise either numerical term of a

simple expression.
 <op> The arithmetic operator (+, -, *, /, &, or ^) of a simple expression to be evaluated.

Examples:

 >EVAL 45 + 32
 004DH 077T 000115O 0000000001001101Q "w"

 >EVAL 100T
 0064H 100T 000144O 0000000001100100Q "d"

EVAL_Command
$EVAL Command
KEVAL Command

$ K HELP - Open Help File

The HELP command opens the Windows help file for the program. If this command is entered
with an optional parameter, help information specifically for that parameter appears. If this
command is entered without any parameter value, the main contents for the help file appears.

An alternative way to open the help system is to press the F1 key.

Syntax:

 HELP [<topic>]

Where:

 <topic> a debug command or assembly instruction

Examples:

 >HELP Open the help system
 >HELP GO Open GO command help information.

HELP_Command
$HELP Command
KHELP Command

$ K INFO - Display Line Information

The INFO command displays information about the line that is highlighted in the source window.
Information displayed includes the name of the file being displayed in the window, the line
number, the address, the corresponding object code, and the disassembled instruction.

Syntax:

 INFO

Example:

 >INFO Display information about the cursor line.

Shows:

 Filename: PODTEST.ASM Line number:6
 Address: $0100
 Disassembly: START 5F CLRX

INFO_Command
$INFO Command
KINFO Command

$ K MD or SHOW - Display Memory at Address

The MD command displays (in the memory window) the contents of memory locations beginning
at the specified address. The number of bytes shown depends on the size of the window and
whether ASCII values are being shown. See Memory Window for more information. If a log file
is open, this command also writes the first 16 bytes to the log file.

The MD and SHOW commands are identical.

Syntax:

 MD <address>

 Where:

 <address> The starting memory address for display in the upper left corner of the

memory window.

Examples:

 >MD 200 Display the contents of memory beginning at hex address 200.
 >SHOW 100 Display the contents of memory beginning at hex address 100.

MD_Command
$MD Command
KMD Command

$ K REM - Place Comment in Macro File

The REM command allows a user to display comments in a macro file. When the macro file is
executing, the comment appears in the status window. The text parameter does not need to be
enclosed in quotes.

Syntax:

 REM <text>

Where:

 <text> A comment to be displayed when a macro file is executing.

Example:

>REM Program executing Display message "Program executing" during macro file
execution.

REM_Command
$REM Command
KREM Command

$ K MACROEND - Stop Saving Commands to File

The MACROEND command closes the macro file in which the software has saved debug
commands. (The MACROSTART command opened the macro file). This will stop saving debug
commands to the macro file.

Syntax:

 MACROEND

Example:

 >MACROEND Stop saving debug commands to the macro file, then close the file.

MACROEND_Command
$MACROEND Command
KMACROEND Command

$ K SAVEDESK - Save Desktop Settings

The SAVEDESK command saves the desktop settings for the application when it is first opened
or for use with the LOADDESK command. The settings saved are window position, size,
visibility, etc.

Syntax:

 SAVEDESK

Example:

 >SAVEDESK Save window settings for the application.

SAVEDESK_Command
$SAVEDESK Command
KSAVEDESK Command

$ K WHEREIS - Display Symbol Value

The WHEREIS command displays the value of the specified symbol. Symbol names are defined
through source code or the SYMBOL command.

Syntax:

 WHEREIS <symbol> | <address>

Where:

 <symbol> A symbol listed in the symbol table.
 <address> Address for which a symbol is defined.

Examples:

 >WHEREIS START Display the symbol START and its value.
 >WHEREIS 0300 Display the hex value 0300 and its symbol name if any.

WHEREIS_Command
$WHEREIS Command
KWHEREIS Command

$ K UPLOAD_SREC - Upload S-Record to Screen

The UPLOAD_SREC command uploads the content of the specified program memory block
(range), in .S19 object file format, displaying the contents in the status window. If a log file is
opened, then UPLOAD_SREC will put the information into it as well. Same as
P_UPLOAD_SREC.

Note:

If the UPLOAD_SREC command is entered, sometimes the memory contents scroll through the
debug window too rapidly to view. Accordingly, either the LOGFILE command should be used,
which records the contents into a file, or use the scroll bars in the status window.

Syntax:

 UPLOAD_SREC <startrange> <endrange>

Where:

 <startrange> Beginning address of the memory block.
 <endrange> Ending address of the memory block (range)

Example:

 >UPLOAD_SREC 300 7FF Upload the 300−7FF memory block in .S19 format.

UPLOAD_SREC_Command
$UPLOAD_SREC Command
KUPLOAD_SREC Command

$ D_UPLOAD_SREC

The D_UPLOAD_SREC command uploads the content of the specified data memory block
(range), in .S19 object file format, displaying the contents in the status window. If a log file is
opened, then D_UPLOAD_SREC will put the information into it as well.

Note:

If the D_UPLOAD_SREC command is entered, sometimes the memory contents scroll through
the debug window too rapidly to view. Accordingly, either the LOGFILE command should be
used, which records the contents into a file, or use the scroll bars in the status window.

Syntax:

 D_UPLOAD_SREC <startrange> <endrange>

Where:

 <startrange> Beginning address of the memory block.
 <endrange> Ending address of the memory block (range)

Example:

 >D_UPLOAD_SREC 300 7FF Upload the 300−7FF memory block in .S19 format.

D_UPLOAD_SREC
$D_UPLOAD_SREC

$ K SYMBOL - Add Symbol

The SYMBOL command creates a new symbol, which can be used anywhere in the debugger, in
place of the symbol value. If this command is entered with no parameters, it will list the current
user defined symbols. If parameters are specified, the SYMBOL command will create a new
symbol.

The symbol label is case insensitive and has a maximum length of 16T. It can be used with the
ASM and MM command, and replaces all addresses in the Code Window (when displaying
disassembly) and Variables Window.

The command has the same effect as an EQU statement in the assembler.

Syntax:

 SYMBOL [<label> <value>]

Where:

 <label> The ASCII-character string label of the new symbol.
 <value> The value of the new symbol (label).

Examples:

>SYMBOL Show the current user−defined symbols.
>SYMBOL timer_control $08 Define new symbol 'timer_control', with hex value 08.

Subsequently, to modify hex location 08, enter the
command 'MM timer_control'.

SYMBOL_Command
$SYMBOL Command
KSYMBOL Command

$ K VAR - Display Variable

The VAR command displays the specified address and its contents in the Variables Window for
viewing during code execution. Variants of the command display a byte, a word, a long, or a
string. As the value at the address changes, the variables window updates the value. The
maximum number of variables is 32. You may also enter the requisite information using the Add
Variable box, which may be called up by double-clicking on the Variables Window or executing
the VAR command without a parameter.

In the ASCII displays, a control character or other non-printing character is displayed as a period
(.). The byte, word, long, or string variant determines the display format:

∗ Byte (.B): hexadecimal (the defualt)
∗ Word (.W): hexadecimal
∗ Long (.L): hexadecimal
∗ String (.S): ASCII characters

To change the format from the default of hexdecimal, use the Add Variable box.

The optional <n> parameter specifies the number of string characters to be displayed; the default
value is one. The <n> parameter has no effect for byte, word, or long values.

Syntax:

 VAR [.B|.W|.L|.S] <address> [<n>]

Where:

<address> The address of the memory variable.
<n> Optional number of characters for a string variable; default value is 1,

does not apply to byte or word variables.

Examples:

>VAR C0 Show byte value of address C0 (hex and binary)
>VAR.B D4 Show byte value of address D4 (hex and binary)

VAR_Command
$VAR Command
KVAR Command

>VAR.W E0 Show word value of address E0 (hex & decimal)
>VAR.S C0 5 Show the five-character ASCII string at hex address C0.

$ K SHOWCODE - Display Code at Address

The SHOWCODE command displays code in the code windows beginning at the specified
address, without changing the value of the program counter (PC). The code window shows either
source code or disassembly from the given address, depending on which mode is selected for the
window. This command is useful for browsing through various modules in the program. To
return to code where the PC is pointing, use the SHOWPC command.

Syntax:

 SHOWCODE <address>

Where:

<address> The address or label where code is to be shown.

Example:

>SHOWCODE 200 Show code starting at hex location 200.

SHOWCODE_Command
$SHOWCODE Command
KSHOWCODE Command

$ K SHOWMAP or MAP - Show Information in Map
File

The SHOWMAP command enables the user to view information from the current MAP file stored
in the memory. All symbols defined in the source code used for debugging will be listed. The
debugger defined symbols, defined with the SYMBOL command, will not be shown. (The MAP
command is identical to the SHOWMAP command.)

Syntax:

 SHOWMAP

Example:

 >SHOWMAP Shows symbols from the loaded map file and their values.

SHOWMAP_Command
$SHOWMAP Command
KSHOWMAP Command

$ K COLORS - Set Colors of Simulator

The COLORS command brings up a popup window, the Colors Window, that allows the user to
choose the text and background colors for all windows in the debugger. Once colors are selected
for the windows, use the SAVEDESK command to save them for all further debugging sessions.
See Colors Window for more information.

Syntax:

 COLORS

Example:

 >COLORS Open the colors window.

COLORS_Command
$COLORS Command
KCOLORS Command

$ K SHOWPC - Display Code at PC

The SHOWPC command displays code in the code window starting from the address in the
program counter (PC). The code window shows either source code or disassembly from the
given address, depending on which mode is selected for the window. This command is often
useful immediately after the SHOWCODE command.

Syntax:

 SHOWPC

Example:

>SHOWPC Show code from the PC address value.

SHOWPC_Command
$SHOWPC Command
KSHOWPC Command

$ CODE

Shows disassembled code in the code window starting at address add. If you specify an address
in the middle of an intended instruction, improper results may occur.

Syntax:

 CODE <add>

Where:

<add> Address where your code begins.

Example:

>CODE 100 Shows the disassembled code in the code window starting at hex

address 100.

CODE_Command
$CODE Command

$ K GOTILROM

Executes fast single steps without updating the screen, until the address is reached. This is the
fastest way to breakpoint in ROM.

Syntax:

 GOTILROM [add]

Where:
 add Starting address of your code.

Example:

>GOTILROM 1000 This will do fast single steps from the location where your program
counter is set at and stops at hex location 1000 which in this
example is the starting location of the ROM. Starting location of
the ROM depends on the memory map of your system. After
reaching hex 1000 you can do single step to debug the code.

GOTILROM_Command
$GOTILROM Command
KGOTILROM Command

$ K LOADV

First performs the LOAD command and then automatically does a VERIFY command with the
same file.

Syntax:

 LOADV [filename]

Where:

 filename Filename of your source code

Example:

LOADV myprog This command will load the S19 on to the target and then it will read
the contents of the S19 file from the target board and compare it with
the 'myprog' file.

LOADV_Command
$LOADV Command
KLOADV Command

$ K QUIT

Exit the program.

Syntax:

QUIT

Example:

 >QUIT Exit the application

 {bmc Icd00015.BMP}

QUIT_Command
$QUIT Command
KQUIT Command

$ K SNAPSHOT

Takes a snapshot (black and white) of the current screen and sends it to the capture file if one
exists. Can be used for test documentation and system testing.

Syntax:

SNAPSHOT

Example:

>LOGFILE SNAPSHOT This command will open a file by the name

SNAPSHOT.LOG and stores all the command at the status
window.

>SNAPSHOT This command will take a snapshot of all the open windows
of ICD and store it in SNAPSHOT.LOG file.

>LF This command will close SNAPSHOT.LOG file

Now you can open the SNAPSHOT.LOG file with any text editor, such as EDIT.

SNAPSHOT_Command
$SNAPSHOT Command
KSNAPSHOT Command

$ K SOURCEPATH

Either uses the specified filename or prompts the user for the path to search for source code that
is not present in the current directory.

Syntax:

 SOURCEPATH filename

Where:

 filename Name of the source file

Example:

 >SOURCEPATH d:\mysource\myfile.asm

Sourcepath_Command
$Sourcepath Command
KSourcepath Command

$ K PC - Program Counter

The PC command assigns the specified value to the program counter (PC). As the PC always
points to the address of the next instruction to be executed , assigning a new PC value changes
the flow of code execution.

An alternative way for setting the Program Counter if source code is showing in a code window is
to position the cursor on a line of code, then press the right mouse button and select the Set PC
at Cursor menu item. This assigns the address of that line to the PC.

Syntax:
 PC <address>

Where:
 <address> The new PC value.

Example:
 >PC 0500 Sets the PC value to 0500.

PC___Program_Counter
$PC - Program Counter
KPC;Program Counter

$ K Stack Pointer

The SP command sets the Stack Pointer to a specified value

Syntax:

 SP <n>

Where:

 <n> The value to be loaded into the Stack Pointer.

Example:

>SP FF Set the Stack Pointer to hex FF.

Stack_Pointer
$Stack Pointer
KStack Pointer

$ K Z - Set/Clear Z Bit

The Z command sets or clears (that is, assigns 0 or 1 to) the Z bit in the condition code register
(CCR).

Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is ZC (Z is
zero and C is carry). A letter in these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
 Z 0|1

Examples:
 >Z 0 Clear the Z bit of the CCR.
 >Z 1 Set the Z bit of the CCR.

Z_Command
$Z Command
KZ

$ K A or ACC - Set Accumulator Value

The ACC command sets the accumulator to a specified value. The ACC and A commands are
identical.

Syntax:
 ACC <n>

Where:
 <n> The value to be loaded into the accumulator.

Example:
 >A 10 Set the accumulator to $10.

A_Command
$A Command
KA

$ K HX - Set H:X Index Register Pair

The HX command sets both bytes of the concatenated index register (H:X) to the specified value.

Syntax:
 HX <value>

Where:
<value> The new value for the X register.

Example:
>HX 0400 Set the H:X index register value to $0400.

HX_Command
$HX Command
KH:X Index Register;HX

$ K HREG - Set H Register

The HREG command sets the high byte of the H:X index register to a specified value.

Syntax:
 HREG <value>

Where:
<value> The new value for the X register.

Example:
>HREG 05 Set the H index register value to 05.

HREG_Command
$HREG Command
KH Index Register;HREG

$ K X or XREG - Set X Index Register

The X command sets the index register (X) to the specified value. The X command is identical to
the XREG command.

Syntax:
 X <value>

Where:
 <value> The new value for the X register.

Example:
>X 05 Set the index register value to 05.
>XREG F0 Set the index register value to F0.

X_Command
$X Command
KX

$ K PC - Set Program Counter

The PC command assigns the specified value to the program counter (PC). As the PC always
points to the address of the next instruction to be executed , assigning a new PC value changes
the flow of code execution.

An alternative way for setting the Program Counter if source code is showing in a code window is
to position the cursor on a line of code, then press the right mouse button and select the Set PC
at Cursor menu item. This assigns the address of that line to the PC.

Syntax:
 PC <address>

Where:
 <address> The new PC value.

Example:
 >PC 0500 Sets the PC value to 0500.

PC_Command
$PC Command
KPC

$ K CCR - Set Condition Code Register

The CCR command sets the condition code register (CCR) to the specified hexadecimal value.

Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is ZC (Z is
zero and C is carry). A letter in these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
 CCR <n>

Where:

<n> The new hexadecimal value for the CCR.

Example:
>CCR 01 Assign the value 01 to the CCR. This makes the binary pattern

00000001; the C bit set, other bits clear.

CCR_Command
$CCR Command
KCCR

$ K C - Set/Clear C Bit

The C command sets or clears (that is, assigns 0 or 1 to) the C bit of the condition code register
(CCR).

Note:
The CCR bit designators are at the lower right of the CPU window. The CCR pattern is
V11HINZC (V is overflow, H is half-carry, I is IRQ interrupt mask, N is negative, Z is zero and C is
carry). A letter in these designators means that the corresponding bit of the CCR is set; a period
means that the corresponding bit is clear.

Syntax:
 C 0|1

 Examples:
 >C 0 Clears the C bit of the CCR.
 >C 1 Sets the C bit of the CCR.

C_Command
$C Command
KC

$ K CPU Window

The CPU Window displays the current state of the RS08 CPU registers. The popup window
allows modification of these value.

{bmc Icd00016.BMP}
POPUP MENU

By pressing the RIGHT MOUSE BUTTON while the cursor is over the CPU window, the user is
given a popup menu which has the following options:

Set Accumulator
Sets the accumulator to a user defined value. Upon selecting this option, the user is prompted for
a value.

Set X Index Register
Sets the X index register to a user defined value. Upon selecting this option, the user is prompted
for a value.

Set Shadow Program Counter
This option is disabled and is only shown for convention.

Set PC
Sets the Program Counter (PC) to a user defined value. Upon selecting this option, the user is
prompted for a value.

Set Condition Codes
Allows the user to toggle bits within the CCR. Upon selecting this option, the CCR Modification
Window is displayed.

{bmc Icd00017.BMP}

KEYSTROKES

The following keystrokes are valid while the CPU window is the active window:

F1 Shows this help topic
ESC Make the STATUS window the active window

CPU_Window
$CPU Window
KCPU Window

$ K Stack Window

The Stack Window shows values that have been pushed on the stack, the stack pointer value,
along with CPU results if a RTI or RTS instruction is executed at that time.

{bmc Icd00018.BMP}

During an interrupt, the stack window also shows the interrupt stack: the top fifteen values of the
stack, plus the values of the condition code register (CCR), accumulator (A) and index register
(X). This information indicates the restored state of the stack upon the return from the interrupt.
During execution of a subroutine, the stack window also shows the subroutine stack, which
indicates the restored state of the stack upon return from a subroutine.

Note:
RS08 MCUs store information in the stack (1) during an interrupt or (2) during execution of a
subroutine. The stack window shows both these possible interpretations of stack data. You must
know whether program execution is in an interrupt or in a subroutine, to know which stack data
interpretation is valid.

Stack_Window
$Stack Window
KStack Window

$ + K RTVAR Command

The RTVAR command displays the specified address and its contents in the Variables Window
for viewing during code execution and while the part is running (real time). Variants of the
command display a byte, a word, a long, or a string. As the value at the address changes, the
variables window updates the value. The maximum number of variables is 32. You may also
enter the requisite information using the Add Variable box, which may be called up by double-
clicking on the Variables Window or executing the RTVAR command without a parameter.

In the ASCII displays, a control character or other non-printing character is displayed as a period
(.). The byte, word, long, or string variant determines the display format:

∗ Byte (.B): hexadecimal (the default)
∗ Word (.W): hexadecimal
∗ Long (.L): hexadecimal
∗ String (.S): ASCII characters

To change the format from the default of hexadecimal, use the Add Variable box.

The optional <n> parameter specifies the number of string characters to be displayed; the default
value is one. The <n> parameter has no effect for byte, word, or long values.

Syntax:

 RTVAR [.B|.W|.L|.S] <address> [<n>]

Where:

<address> The address of the memory variable.
<n> Optional number of characters for a string variable; default value is 1,

does not apply to byte or word variables.

Examples:

>RTVAR C0 Show byte value of address C0 (hex and binary)

RTVAR_Command
$ RTVAR Command
+ ICD08Z:0
K RTVAR Command

>RTVAR.B D4 Show byte value of address D4 (hex and binary)
>RTVAR.W E0 Show word value of address E0 (hex & decimal)
>RTVAR.S C0 5 Show the five-character ASCII string at hex address C0.

$ + K @ Modifying A Variable’s Value

To modify the current value of a variable, double-click the variable name in the variables window.
If the debugger supports modification of this type of variable, the variable modification dialog will
be displayed. Make sure to check the “Modify value” checkbox. At this point the value may be
altered by the user. When the OK button is clicked, the variable value in the processor’s memory
will be updated and the variable window will be refreshed to display this value. Note that some
user-defined types, such as enumerated types, may not be editable in this fashion.

{bmc var_mod.bmp}

MODIFYING_A_VARIABLE_S_VALUE
$ MODIFYING A VARIABLE'S VALUE
+ ICD08Z:0
K MODIFYING A VARIABLE S VALUE
@ Status|0|||0||||||

$ + K @ Modifying A Variable’s Properties

To modify a variable’s display properties, such as the type or numeric display base, double-click
the variable in the variables window. Check “Modify display properties” in the dialog that is then
displayed. At this point the type and base may be modified. When the OK button is clicked, the
variable in the variables window will update its value according to the new settings.

{bmc var_modp.bmp}

MODIFYING_A_VARIABLE_S_PROPERTIES
$ MODIFYING A VARIABLE'S PROPERTIES
+ ICD08Z:0
K MODIFYING A VARIABLE S PROPERTIES
@ Status|0|||0||||||

$ + K @ Using Code Window Quick Execution
Features

In the source code window, there will be a tiny red dot and a tiny blue arrow next to each source
instruction that has underlying object code. If a large blue arrow is shown on a source line, this
indicates that the program counter (PC) points to this instruction. If a large red stop sign appears
on the source line, this indicates that a breakpoint is set on this line. A close-up of the code may
be seen below:

{bmc CODw_dot.bmp}

The user may set a breakpoint at an instruction by double-clicking the tiny red dot,. When the
user issues the HGO command or clicks the high-level language GO button {bmc
HGO_BTTN.bmp} on the debugger button bar, execution will begin in real-time. If the debugger
encounters a breakpoint, execution will stop on this source line. If a breakpoint is not
encountered, execution will continue until the user presses a key or uses the stop button on the
debugger button bar. To remove a breakpoint, double-click the large red stop sign.

By double-clicking the tiny blue arrow, the user will be issuing a GOTIL command to the address
of this source line. A GOTIL command will set a single breakpoint at the desired address, and the
processor will begin executing code in real-time from the point of the current program counter
(PC). When the debugger encounters the GOTIL address, execution will stop. If this location is
not encountered, execution will continue until the user presses a key or uses the stop button on
the debugger button bar. Note that all set breakpoints are ignored when the GOTIL command is
used.

The disassembly window also supports double-clicking of the red and blue symbols, and there is
an additional symbol that may appear: a small blue S enclosed in a box. This indicates that that a
source level instruction starts on this disassembly instruction. An image of this is shown here:

{bmc CODwdot2.bmp}

Using_Code_Window_Quick_Execution_Features
$ Using Code Window Quick Execution Features
+ ICD08Z:0
K Using Code Window Quick Execution Features
@ Status|0|||0||||||

$ + K @ Using Code Window Popup Debug
Evaluation Hints

When debugging source code, it is often advantageous to be able to view the contents of a
variable that appears in the source code. The in-circuit debugger has a feature called “debug
hints” which, when active, will display the value of a variable while the mouse cursor is held still
over the variable name in the code window. The hint may be displayed in one of three locations,
as shown below:

{bmc pophint1.bmp}

The three configurable locations are the code window title bar, the status window caption bar, or
a popup that is displayed until the mouse is moved. The hint can be displayed in any combination
of the three locations. Locations where the popup hints are displayed are set in the configuration
menu of the debugger.

The information displayed in the hint box is similar to the information displayed in the variables
window. A close-up image of this hint box is shown here:

 {bmc pophint2.bmp}

The information shown is the variable name (date_var), value (Thursday), and type (generalized
C language enumeration).

Using_Code_Window_Popup_Debug_Evaluation_Hints
$ Using Code Window Popup Debug Evaluation Hints
+ ICD08Z:0
K Using Code Window Popup Debug Evaluation Hints
@ Status|0|||0||||||

	ICDRS08 In-Circuit Debugger for RS08
	ICD Software License
	0F# 1F$ 2FK Command Line Parameters
	3F# 4F$ 5FK User Interface
	6F# 7F$ 8FK Nomenclature
	9F# 10F$ 11FK Commands
	52F# 53F$ 54FK PEmicro
	55F# 56F$ 57FK Short History Of PEmicro
	58F# 59F$ 60FK Command Recall
	61F# 62F$ 63FK Memory Access
	64F# 65F$ 66FK IRQ or INT Command
	67F# 68F$ 69FK Using The Register Interpreter
	70F# 71F$ 72FK G or GO or RUN - Begin Program Execution
	73F# 74F$ 75FK BR Command
	76F# 77F$ 78FK LOAD - Load S19 and MAP
	79F# 80F$ 81FK GOTIL - Execute Program until Address
	82F# 83F$ 84FK ST or STEP or T - Single Step
	85F# 86F$ 87FK BLOCK FILL or BF
	88F# 89F$ 90FK TRACE
	91F# 92F$ SHOWTRACE
	93F# 94F$ SOURCE
	95F# 96F$ 97FK STEPTIL - Single Step to Address
	98F# 99F$ 100FK RESET - Reset Emulation MCU
	101F# 102F$ 103FK LPTx
	104F# 105F$ 106FK WATCHDOG
	107F# 108F$ 109FK STEPFOR - Step Forever
	110F# 111F$ 112FK VERIFY
	113F# 114F$ 115FK NOBR
	116F# 117F$ 118FK TIME
	119F# 120F$ 121FK LOADALL
	122F# 123F$ 124FK COUNT
	125F# 126F$ 127FK COUNTER
	128F# 129F$ 130FK MACS
	131F# 132F$ 133FK SERIAL
	134F# 135F$ 136FK SERIALON
	137F# 138F$ 139FK SERIALOFF
	140F# 141F$ 142FK RUNNING
	143F# 144F$ 145FK GOEXIT
	146F# 147F$ 148FK MD - Memory Display
	149F# 150F$ 151FK MD2 Command
	152F# 153F$ 154FK LOAD_BIN
	155F# 156F$ 157FK LOADV_BIN
	158F# 159F$ 160FK REG or STATUS - Show Registers
	161F# 162F$ 163FK BGND_TIME
	164F# 165F$ 166FK QUIET
	167F# 168F$ 169FK DUMP_TRACE
	170F# 171F$ 172FK SS
	173F# 174F$ 175FK GONEXT
	176F# 177F$ 178FK VERSION or VER - Display Software Version
	179F# 180F$ 181FK CAPTURE
	182F# 183F$ 184FK CAPTUREOFF
	185F# 186F$ 187FK ASCIIF3 and ASCIIF6
	188F# 189F$ MDF3 / MDF6 or SHOWF3 / SHOWF6
	190F# 191F$ 192FK PC - Program Counter
	193F# 194F$ 195FK Status Window
	199F# 200F$ 201FK Code Window
	202F# 203F$ 204FK Variables Window
	205F# 206F$ 207FK Memory Window
	208F# 209F$ 210FK Colors Window
	211F# 212F$ 213FK Adding And Deleting Variables
	214F# 215F$ 216FK BELL - Sound Bell
	217F# 218F$ 219FK CLEARMAP - Clear Map File
	220F# 221F$ 222FK CLEARVAR
	223F# 224F$ 225FK ASM - Assemble Instructions
	226F# 227F$ 228FK MM or MEM - Modify Memory
	229F# 230F$ 231FK EXIT or QUIT - Exit Program
	232F# 233F$ 234FK CLEARSYMBOL - Clear User Symbols
	235F# 236F$ 237FK LF or LOGFILE - Open / Close Log File
	238F# 239F$ 240FK MACRO or SCRIPT - Execute a Batch File
	241F# 242F$ 243FK MACROSTART - Save Debug Commands to File
	244F# 245F$ 246FK DASM - Disassemble Memory
	247F# 248F$ 249FK LOADDESK - Load Desktop Settings
	250F# 251F$ 252FK LOADMAP - Load Map File
	253F# 254F$ 255FK LISTON - Show Info during Steps
	256F# 257F$ 258FK DUMP - Dump Data Memory to Screen
	259F# 260F$ PDUMP - Dump Program Memory To Screen
	261F# 262F$ 263FK LISTOFF - Do Not Show Info During Steps
	264F# 265F$ 266FK EVAL - Evaluate Expression
	267F# 268F$ 269FK HELP - Open Help File
	270F# 271F$ 272FK INFO - Display Line Information
	273F# 274F$ 275FK MD or SHOW - Display Memory at Address
	276F# 277F$ 278FK REM - Place Comment in Macro File
	279F# 280F$ 281FK MACROEND - Stop Saving Commands to File
	282F# 283F$ 284FK SAVEDESK - Save Desktop Settings
	285F# 286F$ 287FK WHEREIS - Display Symbol Value
	288F# 289F$ 290FK UPLOAD_SREC - Upload S-Record to Screen
	291F# 292F$ D_UPLOAD_SREC
	293F# 294F$ 295FK SYMBOL - Add Symbol
	296F# 297F$ 298FK VAR - Display Variable
	299F# 300F$ 301FK SHOWCODE - Display Code at Address
	302F# 303F$ 304FK SHOWMAP or MAP - Show Information in Map File
	305F# 306F$ 307FK COLORS - Set Colors of Simulator
	308F# 309F$ 310FK SHOWPC - Display Code at PC
	311F# 312F$ CODE
	313F# 314F$ 315FK GOTILROM
	316F# 317F$ 318FK LOADV
	319F# 320F$ 321FK QUIT
	322F# 323F$ 324FK SNAPSHOT
	325F# 326F$ 327FK SOURCEPATH
	328F# 329F$ 330FK PC - Program Counter
	331F# 332F$ 333FK Stack Pointer
	334F# 335F$ 336FK Z - Set/Clear Z Bit
	337F# 338F$ 339FK A or ACC - Set Accumulator Value
	340F# 341F$ 342FK HX - Set H:X Index Register Pair
	343F# 344F$ 345FK HREG - Set H Register
	346F# 347F$ 348FK X or XREG - Set X Index Register
	349F# 350F$ 351FK PC - Set Program Counter
	352F# 353F$ 354FK CCR - Set Condition Code Register
	355F# 356F$ 357FK C - Set/Clear C Bit
	358F# 359F$ 360FK CPU Window
	361F# 362F$ 363FK Stack Window
	364F# 365F$ 366F+ 367FK RTVAR Command
	368F# 369F$ 370F+ 371FK 372F@ Modifying A Variable’s Value
	373F# 374F$ 375F+ 376FK 377F@ Modifying A Variable’s Properties
	378F# 379F$ 380F+ 381FK 382F@ Using Code Window Quick Execution Features
	383F# 384F$ 385F+ 386FK 387F@ Using Code Window Popup Debug Evaluation Hints

